

This article was downloaded by:

On: 25 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

Absorption of Carbon Dioxide into Aqueous Xanthan Gum Solution Containing Monoethanolamine

Sang-Wook Park^a; Byoung-Sik Choi^a; Ki-Won Song^a; Kwang-Joong Oh^a; Jae-Wook Lee^b

^a Division of Chemical Engineering, Pusan National University, Busan, Korea ^b Department of Chemical Engineering, Sogang University, Seoul, Korea

To cite this Article Park, Sang-Wook , Choi, Byoung-Sik , Song, Ki-Won , Oh, Kwang-Joong and Lee, Jae-Wook(2007) 'Absorption of Carbon Dioxide into Aqueous Xanthan Gum Solution Containing Monoethanolamine', *Separation Science and Technology*, 42: 16, 3537 – 3554

To link to this Article: DOI: 10.1080/01496390701710646

URL: <http://dx.doi.org/10.1080/01496390701710646>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Absorption of Carbon Dioxide into Aqueous Xanthan Gum Solution Containing Monoethanolamine

Sang-Wook Park, Byoung-Sik Choi, Ki-Won Song, and Kwang-Joong Oh

Division of Chemical Engineering, Pusan National University, Busan,
Korea

Jae-Wook Lee

Department of Chemical Engineering, Sogang University, Seoul, Korea

Abstract: Carbon dioxide was absorbed into the aqueous xanthan gum (XG) solution in the range of 0–0.151 wt% containing monoethanolamine (MEA) of 0–2 kmol/m³ in a flat-stirred vessel with the impeller of 0.05 m and agitation speed of 50 rpm at 25°C and 0.101 MPa to measure the absorption rate of CO₂. The volumetric liquid-side mass transfer coefficient ($k_L a_L$) of CO₂ decreased with increasing XG concentration, and was correlated with the empirical formula having the rheological behavior of XG solution. The chemical absorption rate of CO₂ was estimated by the film theory using the values of $k_L a_L$ and physicochemical properties of CO₂ and MEA. The aqueous XG solutions made the rate of absorption of CO₂ accelerated compared with the Newtonian liquid based on the same viscosity of the solution.

Keywords: Absorption, monoethanolamine, carbon dioxide, xanthan gum, viscoelastic liquid

INTRODUCTION

Gas-liquid mass transfer in non-Newtonian liquid is an important example of gas absorption in the pseudoplastic flow of industrial processes such as a

Received 6 March 2007, Accepted 30 August 2007

Address correspondence to Sang-Wook Park, Division of Chemical Engineering, Pusan National University, Busan 609-735, Korea. E-mail: swpark@pusan.ac.kr

fermentation broth, slurry, and fluidized bed, etc. (1–3). Variation of the volumetric liquid-phase mass transfer coefficient ($k_L a_L$) in gas-dispersed systems consists of the mass transfer coefficient (k_L) and the specific gas-liquid interfacial area (a_L). The former could be correlated with the Reynolds and the Schmidt numbers including liquid viscosity. It is likely that the latter varies not only with Newtonian liquid properties such as surface tension but also with some non-Newtonian and/or viscoelastic fluid properties.

The apparent viscosity of non-Newtonian fluids is not sufficient to obtain a unified correlation for $k_L a_L$ values in the case of gas absorption into non-Newtonian fluids. Because of the complexities of gas absorption in non-Newtonian media, the correlations obtained by these studies have been limited to just a few kinds of non-Newtonian fluids such as carbopol, carboxymethylcellulose (CMC), polyacrylate (PA), polyethylene oxide (PEO), polyacrylamide (PAA), and polyisobutylene (PIB) solutions. If a considerable reduction of $k_L a_L$ is due to the viscoelasticity of the aqueous solution, then the extent to which data for an viscoelastic solution, such as PAA, deviate from those for the inelastic solution, such as CMC, should correlate with some measure of the solution's elasticity. A dimensionless number, such as Deborah number (De), which relates the elastic properties to the process parameters, is used to correlate $k_L a_L$ with properties of non-Newtonian liquids. Unified correlations have been proposed for $k_L a_L$ in Newtonian as well as non-Newtonian solutions by introducing the dimensionless term, such as $(1 + n_1 De^{n_2})^{n_3}$; which are listed in Table 1. As

Table 1. Coefficients of dimensionless group for gas-liquid mass transfer correlation

Investigator	n_1	n_2	n_3	Substance	Contactor
Yagi and Yoshida (1)	2	0.5	-0.67	CMC, PA	Agitated vessel
Ranade and Ulbrecht (2)	100	1	-0.67	CMC, PAA	Stirred tank
Nakanoh and Yoshida (3)	0	0.55	-1	CMC, PA	Bubble column
Park et al. (4)	100	1	-0.42	PIB, PIB	Agitated vessel
Park et al. (5)	2461.3	1	-0.274	PIB, PIB	Agitated vessel
Park et al. (6)	54.7	1	-0.45	PAA	Agitated vessel
Park et al. (7)	8.33	1.31	1	PEO	Agitated vessel
Park et al. (8)	39.4	1	-0.43	Silica	Agitated vessel

shown in Table 1, values in the dimensionless group are different one another, and the polymers in Table 1 act as a reduction or increment agent in the absorption rate of gas.

There is some information about the effect that elastic properties have on the absorption of gas accompanied by a chemical reaction in non-Newtonian liquid. Park and coworkers (4, 5) presented the effect of elasticity of PIB in the benzene solution and in the w/o (water in oil) emulsion, which is composed of an aqueous alkaline solution as the dispersed phase and a benzene solution as the continuous phase, on the absorption rate of CO₂. Park and coworkers (6–8) also measured the absorption rate of CO₂ in aqueous PAA solution with NaOH, PEO solution with triethanolamine, and nanometer sized silica colloid solution with diethanolamine, respectively. They showed that the viscoelastic materials, such as PIB, PAA, PEO, and nanometer sized silica influenced the absorption rate of CO₂.

Xanthan gum (XG) is an extracellular heteropolysaccharide produced by microorganisms of the genus *Xanthomonas*. Since its first commercial production in 1964, XG has found numerous applications in the food and chemical industries as a thickening agent, stabilizer, and emulsifier (9). Even solutions having a low concentration of XG show high viscosity and insensitivity to changes in temperature, pH, and sanitation. XG production usually has been performed in batch fermentation using the bacterium *Xanthomonas campestris*. The conditions and performance of such fermentations in stirred tank reactors (10), bubble columns (11, 12) and airlifts (13) have been studied by some researchers. XG fermentation is probably the most complex fermentation process in terms of rheological property variation and associated mixing problems. The changes in viscosity during culture exceed 4 orders of magnitude (14), which is greater even than that found in high-viscosity polymerization processes in the chemical industry. The change in rheological properties of broths during the course of a batch fermentation leads also to increasing pseudoplasticity, viscoelasticity, and yield stress values. This last characteristic, the yield stress, makes it especially difficult to achieve good mixing because, beyond a certain distance from the impeller, the fluid is stagnant. In these stagnant regions where only diffusional mass and heat transfer can occur, the productivity is practically reduced to zero, and mass transfer in stirred tank reactors for XG were related to the geometry of the tank and viscosity of liquid based on the power-law liquid (14). As was reviewed in Song et al. (14), there exists a relatively large amount of literature published on the rheological properties of both diluted and semi-dilute (or moderately concentrated) XG solutions prepared from aqueous media. However, only a little attention has been given to the effect of rheological properties of XG on mass transfer of a solute in XG media (16–18). Terasaka and Shibata (19) presented that k_{LaL} of oxygen in XG fermentation of a bubble column was a function of gas hold up, yield stress and diffusivity of oxygen.

To investigate the effect of the rheological behavior of non-Newtonian liquid on the gas absorption as, XG was used as a viscoelastic material in this study, which was one of the series works. The absorption rates of CO₂ were measured in aqueous XG solution containing monoethanolamine (MEA) and they were compared with those estimated by the mass transfer with chemical reaction based on the film theory. Deborah number, which was obtained from a power-law model of the relationship between the measured shear stress and primary normal stress difference against the shear rate of XG solution, was used to obtain a unified correlation between the values of k_{LaL} in water and that in XG solutions.

THEORY

The overall reaction between CO₂ (A) and MEA (B) in aqueous solution is

The stoichiometric coefficients (ν) in Eq. (1) for MEA was obtained from the reference (20) and its value was 2.

Species B is assumed to be a nonvolatile solute, because its vapor pressure is very small as 0.2 mmHg at 20°C. It is assumed that gas phase resistance to absorption is negligible by using pure species A, and thus the concentration of species A at the gas-liquid corresponds to equilibrium with the partial pressure of species A in the bulk gas phase.

The chemical reaction of Eq. (1) is assumed to be second-order (20) as follows:

$$r_A = k_2 C_A C_B \quad (2)$$

Under the assumptions mentioned above, the mass balances of species A and B based on the film theory with chemical reaction and the boundary conditions are given as

$$D_A \frac{d^2 C_A}{dz^2} = k_2 C_A C_B \quad (3)$$

$$D_B \frac{d^2 C_B}{dz^2} = \nu k_2 C_A C_B \quad (4)$$

$$z = 0, \quad C_A = C_{Ai}, \quad \frac{dC_B}{dz} = 0 \quad (5)$$

$$z = z_L, \quad C_A = 0, \quad C_B = C_{Bo} \quad (6)$$

Eqs. (3–6) are put into the dimensionless form as follows:

$$\frac{d^2a}{dx^2} = Mab \quad (7)$$

$$\frac{d^2b}{dx^2} = rqMab \quad (8)$$

$$x = 0; \quad a = 1, \quad \frac{db}{dx} = 0 \quad (9)$$

$$x = 1; \quad a = 0, \quad b = 1 \quad (10)$$

where $M = D_A k_2 C_{Bo} / k_L^2$, $a = C_A / C_{Ai}$, $b = C_B / C_{Bo}$, $x = z / z_L$, $q = v C_{Ai} / C_{Bo}$, $r = D_A / D_B$.

The enhancement factor (β) here is defined as the ratio of molar flux with a chemical reaction to that without chemical reaction:

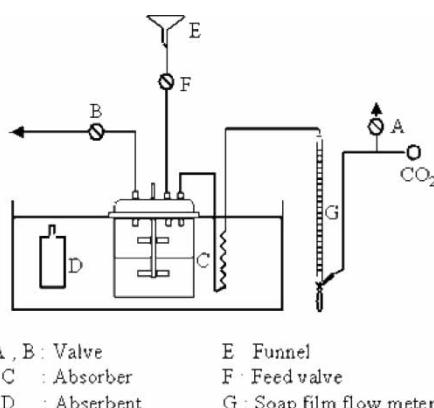
$$\beta = \left. -\frac{da}{dx} \right|_{x=0} \quad (11)$$

The value of β is used to predict the absorption rate (R_A) of CO₂ with chemical reaction as follows:

$$R_A = \beta R_{Ao} = \beta k_L a_L C_{Ai} V_L \quad (12)$$

where R_{Ao} is the physical absorption rate, which is obtained by multiplying the molar flux by the specific contact area between gas and liquid (a_L) and the liquid volume (V_L).

EXPERIMENTAL


Chemicals

The xanthan gum sample used in this study is a commercially available product supplied from the Sigma-Aldrich Corporation (CAS: 11138-66-2, St. Louis, MO, USA). An accurate determination of the molecular weight of XG is extremely difficult for several reasons including its relatively high value, the stiffness of a molecule, and the presence of aggregates (14). The weight average molecular weight of our XG is approximately estimated to be 2×10^6 kg/kmol (14). XG is completely soluble in water. Like most other hydrocolloids, XG needs an intensive agitation upon introduction into an aqueous medium in order to avoid a clotted state at initial dissolution of XG. The XG concentrations used in this study were 0.05, 0.1, and 0.15 wt.%. The XG solution was made at room temperature with constant stirring using a magnetic bar for 24 hr. The preparation procedure was identical to that described elsewhere (14).

Absorption Rate of CO₂

The agitated absorber used for measurement of the absorption rate of CO₂ was constructed of glass (0.102 m inside diameter; 0.151 m in height) with four equally spaced vertical baffles. Straight impeller with 0.05 m in length, 0.017 m in width, and 0.005 m in thickness was used as the liquid phase agitator, and were located at the middle position of the liquid phase of 0.3 dm³. The effect of dead stagnant zones was assumed to be negligible and to be plain, because of the baffles. The contact area between the gas and the liquid was calculated from the ratio of the volume of added water to the measured height of the water in the absorber, and its value was 43.2 cm². The absorption rates of CO₂ were measured along the procedure similar to those reported elsewhere (21) using a semi-batch absorber in the aqueous XG solution of 0–0.015 wt% and MEA of 0~2 kmol/m³ with the impeller speed of 50 rpm at 25°C and 0.101 MPa.

A sketch of the experimental set up is presented in Fig. 1. A typical experimental run was carried out as follows: The vent valve A is initially closed and the purge valve B is open. CO₂ is made to continuously through the absorber C, so as to make sure that the latter is filled with CO₂ at the start of the experiment. During this initial period, the water bath temperature is brought up to the desired value, and the liquid batch is kept in bottle D inside the water bath. At the start of the experiment, the liquid batch is poured into funnel E and the agitator H in C is started. The liquid feed valve F is closed, the purge valve B is closed, and the vent valve A is opened, as simultaneously as possible. Measurements are started at the soap film meter G taking care that there are always two soap films in the meter so that a continuous reading of the cumulative volume of CO₂ which has flowed through the soap film meter (V) can be recorded as a function of time. CO₂ absorption rate was obtained as a slope of the plots of V vs. time at an initial time.

Figure 1. Schematic diagram of the agitated vessel.

PHYSICOCHEMICAL AND RHEOLOGICAL PROPERTIES

The physicochemical and rheological properties in the CO₂-XG-MEA system, which are used to obtain the theoretical values of β , are obtained as follows:

Physicochemical Properties of Carbon Dioxide and MEA in Aqueous XG Solution

Solubility (C_{AI}) of CO₂ in the aqueous XG solutions was obtained using the pressure measuring method, which measured the pressure difference of CO₂ before and after equilibrium in the gas and liquid phases, similar to the procedure reported elsewhere (22) at 25°C and 0.101 MPa. The detailed experimental procedure was reported in our earlier work (8).

Density of the aqueous XG solution was measured within 0.1 kg/m³ by weighing with a pycnometer (Fisher Scientific Co., USA); it was identical within experimental accuracy to the density of water.

The apparent viscosity of the aqueous XG solution was measured with a Brookfield viscometer (Brookfield Eng. Lab. Inc, USA).

Diffusivity (D_B) of MEA in aqueous amine solution was obtained from assumption that the ratio of D_B to D_A was equal to the ratio in water (23). The diffusivities of CO₂ and MEA in water at 25°C were taken as 1.97 × 10⁻⁹ m²/s (24) and 1.1 × 10⁻⁹ m²/s (25), respectively.

Diffusivity (D_{AB}) of CO₂ in aqueous MEA (25) solution was estimated as follows:

$$D_{AB} = (1.9686 - 0.184C_{Bo} - 0.0429C_{Bo}^2) \times 10^{-9} \quad (13)$$

Diffusivity of a solute of a small size such as CO₂, O₂, or CH₄ in a polymer solution depends on the viscosity of the solution and the molecular weight of the polymer. Diffusivity (D_A) of CO₂ in the aqueous XG solution were obtained from the following equation suggested by Lohse et al. (26), which was modified from the Stoke-Einstein equation, and correlated with the molecular weight of the polymer in the solution, respectively.

$$D_A = D_{AB} \left(\frac{\mu_w}{\mu} \right)^{3.7\sqrt{M_w/M_p}} \quad (14)$$

where M_w and M_p are molecular weight of water and XG, respectively.

The obtained values of solubility, diffusivity of CO₂, density, and apparent viscosity of the aqueous XG solution are given in Table 2.

The overall reaction rate constant (k₂) in the reaction of CO₂ with MEA was estimated as follows (20):

$$\log k_2 = 10.99 - \frac{2152}{T} \quad (15)$$

Table 2. Physicochemical and rheological properties of CO₂ and aqueous XG solution

XG (wt.%)	Viscosity (Ns/m ²)	Diffusivity (m ² /s) × 10 ⁹	Solubility (kmol/m ³)	Density (kg/m ³)	Rheological properties		
					n	K (Ns ⁿ /m ²)	b
0	0.0009	1.95	0.035	1000.0	1.0	0.001	—
0.05	0.0331	1.92	0.032	1468.0	0.622	0.0372	0.112
0.10	0.0777	1.91	0.030	1468.3	0.520	0.1050	0.138
0.15	0.1571	1.89	0.023	1468.6	0.458	0.2094	0.181
							23.13

Rheological Properties of the Aqueous XG Solution

We assume that a power-law model, which has been widely used for shear-dependent viscosity, represents the non-Newtonian flow behavior of the aqueous silica colloid solution:

$$\tau = K\gamma^n \quad (16)$$

$$\mu = K\gamma^{n-1} \quad (17)$$

$$N_1 = A\gamma^b \quad (18)$$

where n, K, b, and A are material parameters that depend on the temperature. These parameters were obtained from the measurement of τ and N_1 for the change of γ by using a parallel disk type rheometer (Ares, Rheometrics, U.S.A.), whose diameter is 0.05 m and gap, 0.001 m.

The obtained values of K, n, A and b in the aqueous XG solution of various XG concentration are listed in Table 2. The values of A increased upon increasing the XG concentration, which means that the aqueous XG solution has an elastic behavior (2).

One of the parameters used frequently to represent the characteristics of viscoelasticity is known as the material's characteristic relaxation time (λ) of the liquid defined as

$$\lambda = \frac{N_1}{\mu\gamma^2} \quad (19)$$

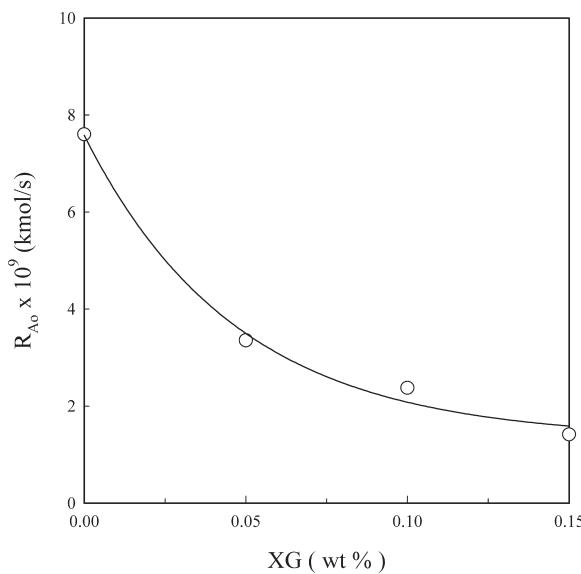
Using Eqs. (18) and (19), this expression is rearranged as

$$\lambda = \frac{A}{K} \gamma^{b-n-1} \quad (20)$$

One of dimensionless numbers, which relates the elastic properties with the process parameters, is Deborah number (De), defined as a ratio of the material's characteristic relaxation time to the characteristic flow time. The characteristic flow time is measured against a characteristic process time (t), which is related to the reciprocal of the agitation speed (N) of impeller in case of stirred tanks, and De is derived as follows:

$$De = \lambda/t = \frac{A}{K} \gamma^{b-n-1} N \quad (21)$$

where shear rate (γ) is obtained in case of the agitation of the liquid in a cylindrical vessel as follows (27):


$$\gamma = 4\pi N/n \quad (22)$$

RESULTS AND DISCUSSION

Empirical Correlation of Volumetric Liquid-Side Mass Transfer Coefficient of CO₂

To observe the effect of XG concentration on the absorption rate (R_{Ao}) and volumetric mass transfer coefficient (k_{LaL}) of CO₂, R_{Ao} were measured in the aqueous XG solutions in the range of XG concentrations of 0–0.15 wt.%, and k_{LaL} were obtained using R_{Ao} and C_{Ai} in Table 2. R_{Ao} and k_{LaL} were plotted against the XG concentrations as circles in Figs. 2 and 3, respectively. As shown in Figs. 2 and 3, R_{Ao} and k_{LaL} decrease with increasing XG concentration. These results may be due to increase of viscosity by increase of XG concentration. The solid line 4 in Fig. 3 was the calculated k_{LaL} , which was obtained using an empirical formula correlated with the rheological behavior of XG solution, which will be shown later. The solid line in Fig. 2 was the R_{Ao} obtained using the calculated k_{LaL} ,

It is customary to express the influence that the viscosity has upon the mass transfer coefficient in terms of the Schmidt number, defined as $\mu/\rho D_A$, in which the viscosity is related to the diffusion coefficient. As shown in Table 2, the diffusivity of CO₂ in the aqueous XG solution did not vary significantly from that in water, and, thus, the use of a dimensionless Schmidt number is not warranted. Instead, the ratio of viscosity of aqueous XG solution to that of water (28) was used to correlation with k_{LaL} ,

Figure 2. Effect of XG concentration on R_{Ao} .

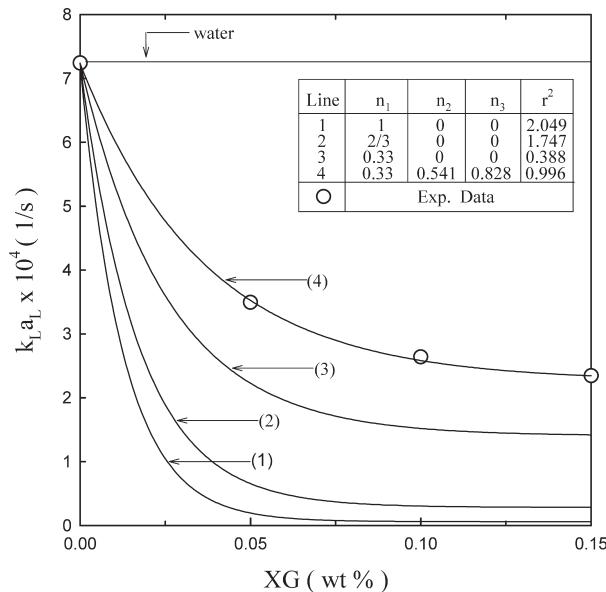


Figure 3. Coefficients of dimensionless group for $k_L a_L = k_{Lw} a_L (\mu_w / \mu)^{n_1} (1 + n_2 De^{n_3})$.

because the viscosity in the agitated vessel depends on the rheological properties, as shown in Eq. (16) through (22).

D_A is inversely proportional to μ in Stokes-Einstein equation, and k_L is directly proportional to D_A^n , where $n=1$ in the film theory, 0.5 in the penetration model, and 2/3 (12, 30) in case of a Newtonian liquid. Based on the results mentioned above, one is suggested to correlate $k_L a_L$ in aqueous XG solution with that in water as follows.:

$$k_L a_L = k_{Lw} a_L \left(\frac{\mu_w}{\mu} \right)^{n_1} \quad (23)$$

The values of $k_L a_L$ are calculated from Eq. (23) against various XG concentrations for n_1 of 1 and 2/3, respectively, and plotted as solid line 1 and 2 in Fig. 3. As shown in Fig. 3, there is a great difference between the calculated $k_L a_L$ (line 1 and 2) and measured $k_L a_L$, respectively; correlation coefficient of line 1 compared with the measured $k_L a_L$ is 2.049, and that of line 2, 1.747. This means that the aqueous XG solution in this study does not follow the behavior of a Newtonian liquid.

To reduce the deviation of $k_L a_L$ for line 1 and 2 from the measured $k_L a_L$ as shown in Fig. 3, new terms, corrected with viscosity and De , were used as follows:

The values of De , which were obtained using Eq. (21) and the rheological properties in Table 2, were plotted against the XG concentration in Fig. 4. As

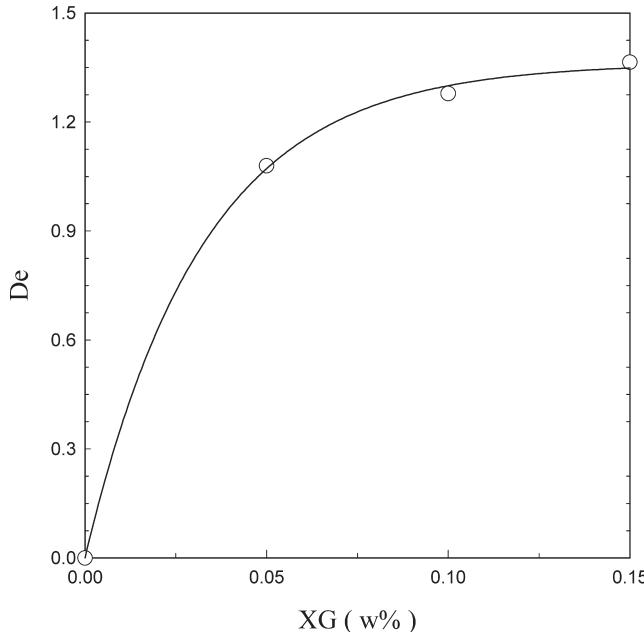


Figure 4. Effect of XG concentration on De.

shown in Fig. 4, De increase with increasing XG concentration. This means that the viscoelasticity of XG solution increases with increasing the XG concentration.

A simple multiple regression exercise using De in Fig. 4 was tried for the plots of $k_L a_L$ combined with the new terms such as $(\mu/\mu_w)^{n_1}$ $(1 + n_2 De^{n_3})$ against XG concentration, which gave the values of n_1 , n_2 , and n_3 of 0.330, 0.541, and 0.828, respectively. A multiple regression analysis provides the following correlation:

$$k_L a_L = k_{Lw} a_L \left(\frac{\mu_w}{\mu} \right)^{0.33} (1 + 0.541 De^{0.828}) \quad (24)$$

The values of $k_L a_L$ are calculated by Eq. (24) and shown as line 4 in Fig. 3. As shown in Fig. 3, the agreement between the measured $k_L a_L$ and those predicted by Eq. (24) is very good with correlation coefficient of 0.996. Also, as shown in Eq. (24), $k_L a_L$ is affected by both the viscosity and the elasticity, and it is decreased upon increasing XG concentration. From the work of Yagi and Yoshida (1), Ranade and Ulbrecht (2), and Moon-Young and Kawase (30), it may be concluded that the exponent m in the relationship $k_L a_L \propto \mu^{-m}$ for stirred tanks is between 0.35 and 0.6. When our data were analyzed by Eq. (24) for the overall effect of viscosity on the

$k_L a_L$, it comes out as $k_L a_L \propto \mu^{-0.33}$, which compares well with the findings of Yagi and Yoshida (1) of $\mu^{-0.4}$ and Ranade and Ulbrecht (2) of $\mu^{-0.41}$, and Moo-Young and Kawase (31) of $\mu^{-0.38}$. As a result in Fig. 3, the deviation of plots of $k_L a_L$ against XG concentration can be eliminated by incorporating De into the correlation.

The measured k_L was obtained using the measured $k_L a_L$ and a_L . The calculated k_L was obtained from the empirical formula of Eq. (24). The measured and calculated values of k_L were plotted against the XG concentration as circle and solid line in Fig. 5, respectively. As shown in Fig. 5, k_L decreases with increasing XG concentration. These results may be due to increase of viscosity and elasticity of the XG solution by increase of XG concentration. The calculated k_L was used to estimate the theoretical β in section 3.

Effect of Rheological Properties on the $k_L a_L$ of CO₂

The value of $k_L a_L$ is affected by both viscosity and elasticity of the aqueous XG solutions as shown in Eq. (24). Figure 3 presented plots of $k_L a_L$ vs. XG concentration for water, the aqueous XG solution without elasticity (line 3), and solution with elasticity (line 4), respectively. The water line has μ of μ_w and De of 0, line 3 has μ of that in aqueous XG solution and De of 0, and line 4 has μ of that in aqueous XG solution with elasticity and

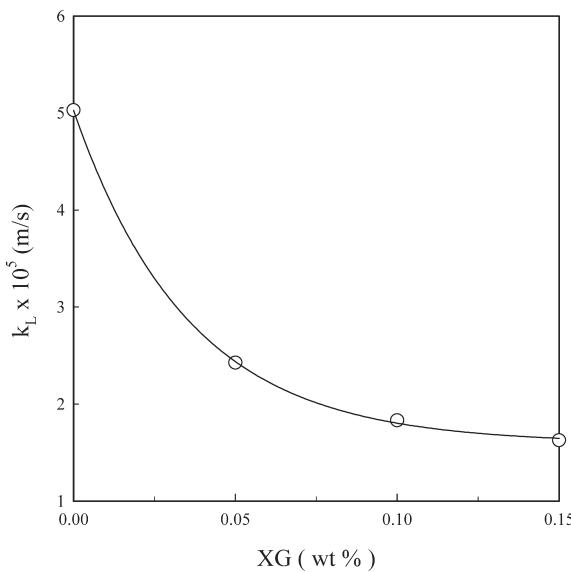


Figure 5. Effect of XG concentration on k_L .

De of some value >0 . The aqueous XG solution without elasticity ($De = 0$) is an imaginary solution, which is assumed to be a Newtonian liquid with the same viscosity as that of the aqueous XG solution with elasticity. As shown in Fig. 3, the k_{LaL} decreases in water line, line 4, and line 3 order. In general, the mass transfer coefficient in the solution is inversely proportional to the viscosity. The viscosity of water is smaller than that of the aqueous XG solution as listed in Table 2, and then, k_{LaL} in water is larger than that in the aqueous XG solution. If the aqueous XG solution in this study would have only viscous behavior, the k_{LaL} should be the k_{LaL} represented as the line 3. But, the actual k_{LaL} of line 4 is larger than that of line 3. The increase of k_{LaL} from line 3 to line 4 might be attributed to the elasticity of the aqueous XG solution. In other words, the aqueous XG solution used in this study might play a role as an increasing agent of k_{LaL} based on the same viscosity of the XG concentration.

Effect of Rheological Properties on the Chemical Absorption of CO_2

To observe the effect of visco-elasticity on the chemical absorption rate of CO_2 , R_A were measured against XG concentration in the range 0–0.15 wt.% at various concentrations of MEA. As shown in Fig. 6, R_A decreases with increasing XG concentration and increases with increasing MEA concentration. Increase of R_A with increasing MEA concentration is due to the reactant of MEA in reaction of CO_2 . The solid lines in Fig. 6 present the R_A obtained from Eq. (12).

The concentration profile of CO_2 was obtained by the numerical solution of Eqs. (7) and (8) with the known parameters containing k_L using the finite element method at given concentrations of XG and MEA, and then, the calculated β was obtained from Eq. (11). The measured and calculated values of β were plotted against the XG concentration in Fig. 7 as symbol and solid line, respectively. As shown in Fig. 7, the values of β hold to be constant almost with increasing XG concentration and increase with increasing MEA concentration.

As shown in Fig. 3, k_{LaL} decreased with increasing XG concentration, and, C_{Ai} in the aqueous XG solution did not vary significantly from that in water, as shown in Table 2. Therefore, decrease of R_A was affected mainly by decrease of k_{LaL} rather than β and C_{Ai} , i.e., reduction of k_{LaL} by the elastic properties of the aqueous XG solution causes decrease of chemical absorption rate of CO_2 .

To apply Eq. (24) broadly, the absorption data for various shapes, sizes, and agitation speeds of the impeller are needed. Also, the quantitative explanation about the phenomena of the reduction of k_{LaL} by the elastic properties of the aqueous XG solution is needed using hydrodynamic analysis for non-Newtonian liquid.

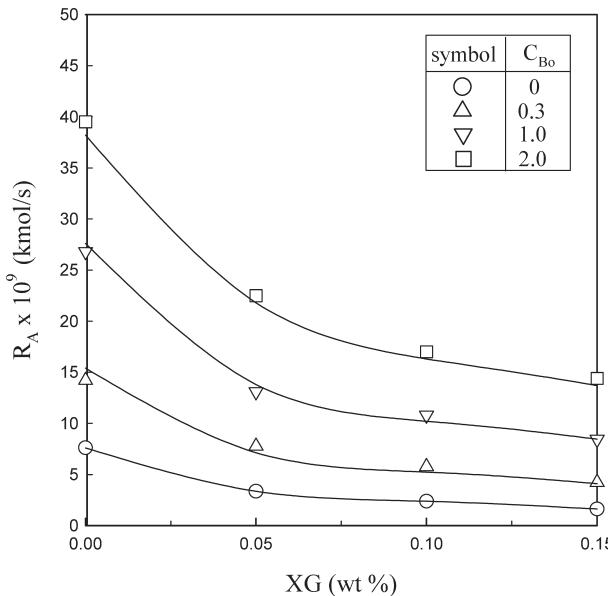


Figure 6. Effect of XG concentration on R_A for various MEA concentrations.

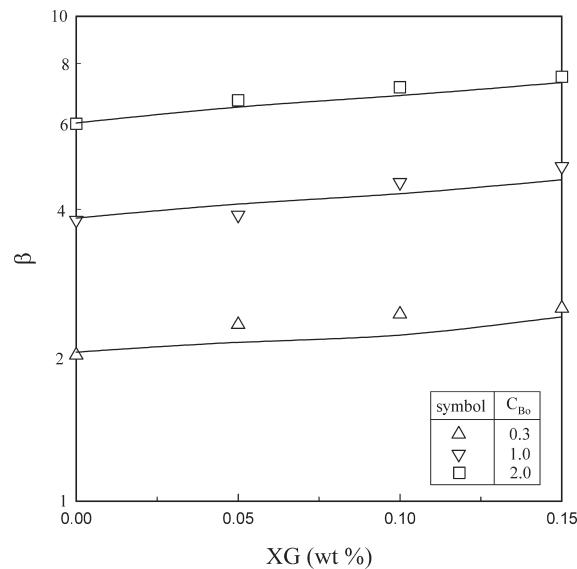


Figure 7. Effect of XG concentration on enhancement factor for various MEA concentrations.

CONCLUSIONS

The $k_L a_L$ of CO_2 was obtained from the absorption rate of carbon dioxide, which was measured into the aqueous XG solution of 0–0.15 wt.% with MEA of 0–2 kmol/m³ in a flat-stirred vessel with 0.05 m size and 50 rpm of agitation speeds of impeller at 25°C and 0.101 MPa.

The aqueous XG solution was an elastic non-Newtonian liquid, and $k_L a_L$ was correlated with an empirical formula having the rheological behavior of XG solution such as Deborah number as follow:

$$k_L a_L = k_{LW} a_L \left(\frac{\mu_w}{\mu} \right)^{0.33} (1 + 0.541 De^{0.828})$$

The chemical absorption rate was estimated from the mass balance accompanied by the chemical reaction based on the film theory using the value of $k_L a_L$, and reduction of $k_L a_L$ by the elastic properties of the aqueous XG solution causes a decrease of the chemical absorption rate of CO_2 at a given MEA concentration.

NOMENCLATURE

a_L	Specific gas-liquid area (m ² /m ³)
C_i	Concentration of species, i (kmol/m ³)
d	Diameter of impeller (m)
D_i	Diffusivity of species, i (m ² /s)
k_2	Reaction rate constant in reaction (1) (m ³ /kmol·s)
k_L	Liquid-side mass transfer coefficient of CO_2 in absorbent (m/s)
N_1	Primary normal stress difference (kg/m · s ²)
V_L	Volume of the liquid phase (m ³)
r^2	Correlation coefficient
r_A	Reaction rate in Equation (2) (kmol/m ³ · s)
R_A	Chemical absorption rate of CO_2 (kmol/s)
R_{Ao}	Physical absorption rate of CO_2 (kmol/s)
T	Temperature (°K)
XG	Xanthan gum
z	Diffusion coordinate of CO_2 (m)
z_L	Film thickness (m)

Greek Letters

β	Enhancement factor of absorption rate by the chemical reaction
γ	Shear rate (1/s)
μ	Viscosity of liquid (N · s/m ²)
μ_w	Viscosity of water (N · s/m ²)

ρ	Density of liquid (kg/m ³)
τ	Shear stress (N/m ²)

Subscripts

A	CO ₂
B	MEA
i	Gas-liquid interface
o	Bulk body of the liquid phase

ACKNOWLEDGMENTS

This work was supported by the Basic Research Program of the Korea Science and Engineering Foundation (KOSEF) through ARC and Brain Korea 21 Project.

REFERENCES

1. Yagi, H. and Yoshida, F. (1975) Gas absorption by Newtonian and non-Newtonian fluids in sparged agitated vessel. *Ind. Eng. Chem. Process Des. Dev.*, 14: 488–493.
2. Ranade, V.R. and Ulbrecht, J.J. (1978) Influence of polymer additives on the gas-liquid mass transfer in stirred tanks. *AIChE J.*, 24: 796–803.
3. Nakanoh, M. and Yoshida, F. (1980) Gas absorption by Newtonian and non-Newtonian liquids in a bubble column. *Ind. Eng. Chem. Process Des. Dev.*, 19: 190–195.
4. Park, S.W., Sohn, I.J., Park, D.W., and Oh, K.J. (2003) Absorption of carbon dioxide into non-Newtonian liquid. I. Effect of viscoelasticity. *Sep. Sci. Technol.*, 38: 1361–1384.
5. Park, S.W., Kim, T.Y., Choi, B.S., and Lee, J.W. (2004) Effect of rheological properties on chemical absorption of carbon dioxide with MEA. *Korea-Australia Rheology J.*, 16: 35–45.
6. Park, S.W., Choi, B.S., Lee, B.D., and Lee, J.W. (2005) Chemical absorption of carbon dioxide into aqueous PAA solution of NaOH. *Sep. Sci. Technol.*, 40: 911–926.
7. Park, S.W., Choi, B.S., and Kim, S.S. (2006) Absorption rate of carbon dioxide into aqueous polyethylene oxide solution containing triethanolamine. *J. Ind. Eng. Chem.*, 12: 199–205.
8. Park, S.W., Lee, J.W., Choi, B.S., and Lee, J.W. (2006) Absorption of carbon dioxide into aqueous colloidal silica solution. *Sep. Sci. Technol.*, 41: 1661–1677.
9. Sandford, A. and Baird, J. (1983) *The Polysaccharides in Molecular Biotechnology*; Aspinall, G.O. (ed.); Academic Press: New York; Vol. 2.
10. Herbst, H., Schumpe, A., and Decker, W. (1992) Xanthan production in stirred tank fermenters: oxygen transfer and scale-up. *Chem. Eng. Technol.*, 15: 425–434.
11. Pons, A., Dussap, C.G., and Gros, J.B. (1989) Modelling *Xanthomonas campestris* batch fermentations in a bubble column. *Biotechnol. Bioeng.*, 33: 394–405.
12. Suh, I.S., Schumpe, A., and Decker, W. (1992) Xanthan production in bubble column and air-lift reactors. *Biotechnol. Bioeng.*, 39: 85–94.

13. Kessler, W.R., Popovic, M.K., and Robinson, C.W. (1993) Xanthan production in an eternal-circulation-loop airlift fermenter. *Can. J. Chem. Eng.*, 71: 101–106.
14. Song, K., Kuk, H., and Chang, G. (2006) Rheology of concentrated xanthan gum solutions: Steady shear flow behavior. *Korea-Australia Rheol.*, 18: 67–81.
15. Galindo, E. and Nienow, A.W. (1992) Mixing of highly viscous simulated xanthan fermentation broths with the Lighynin A-315 impeller. *Biochem. Prog.*, 8: 233–239.
16. Vashitz, O., Ulitzur, S., and Sheituch, M. (1988) Mass transfer, batch and continuous kinetics, on a luminous strain of *Xanthomonas campestris*. *Chem. Eng. Sci.*, 43: 1883–1890.
17. Vashitz, O., Sheituch, M., and Ulitzur, S. (1989) Mass transfer studies using closed-luminous strain of *Xanthomonas campestris*. *Biotechnol. Bioeng.*, 34: 671–680.
18. Garcia-Ochoa, F. and Gomez, E. (1998) Mass transfer coefficient in stirred reactors for xanthan gum solutions. *Biochem. Eng. J.*, 1: 1–10.
19. Terasaka, K. and Shibata, H. (2003) Oxygen transfer in viscous non-Newtonian liquids having yield stress in bubble column. *Chem. Eng. Sci.*, 58: 5331–5337.
20. Hikita, H., Asai, S., and Ikuno, S. (1979) Absorption of carbon dioxide into aqueous monoethanolamine solutions. *AIChE J.*, 25: 793–800.
21. Yu, W.C., Astarita, G., and Savage, D.W. (1985) Kinetics of carbon dioxide absorption in solutions of methyl diethanolamine. *Chem. Eng. Sci.*, 40: 1585–1590.
22. Kennard, M.L. and Meisen, A. (1984) Solubility of carbon dioxide in aqueous diethanolamine solutions at elevated temperature and pressures. *J. Chem. Eng. Data*, 29: 309–312.
23. Nijssing, R.A.T.O., Hendriksz, R.H., and Kramers, H. (1959) Absorption of CO₂ in jet and falling films of electrolyte solutions with and without chemical reaction. *Chem. Eng. Sci.*, 10: 88–104.
24. Hikita, H., Asai, S., and Takatsuka, T. (1976) Absorption of carbon dioxide into aqueous sodium hydroxide and sodium carbonate-bicarbonate solutions. *Chem. Eng. J.*, 11: 131–141.
25. Danckwerts, P.V. and Sharma, M.M. (1966) The absorption of carbon dioxide into solutions of alkalis and amines. *Chem. Eng.*, 44: 244–280.
26. Lohse, M., Quicker, G., and Deckwer, D.W. (1981) Diffusivity and solubility of carbon dioxide in diluted polymer solutions. *AIChE J.*, 27: 626–631.
27. Metzner, A.B. and Otter, R.E. (1957) Agitation of non-Newtonian fluids. *AIChE J.*, 3: 3–10.
28. Sandall, O.C. and Patel, K.G. (1970) Heat transfer to non-Newtonian pseudoplastic fluids in agitated vessels. *Ind. Eng. Chem. Process Des. Dev.*, 9: 139–144.
29. Cussler, E.L. (1984) *Diffusion*; Cambridge University Press: New York.
30. Sada, E., Kumazawa, H., and Hashizume, I. (1983) Chemical absorption of two gases into a slurry containing fine catalyst particles. *Chem. Eng. J.*, 26: 239–244.
31. Moo-Young, M. and Kawase, Y. (1987) Gas hold-up and mass transfer in a bubble column with viscoelastic fluids. *Can. J. Chem. Eng.*, 65: 113–118.